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Field-Flow Fractionation for Poiseuille Flow 
through a Cylindrical Tube 

D. MAES* 
L.U.C. 
B-3610 DIEPENBEEK, BELGIUM 

C. VAN DEN BROECKt 
DEPARTMENT OF CHEMISTRY B-040 
UNIVERSITY OF CALIFORNIA, SAN DIEGO 
LA JOLLA, CALIFORNIA 92093, USA 

Abstract 
We calculate the longitudinal dispersion coefficient K for field-flow fractionation 

in it cylindrical tube by using a variational principle. 

1. INTRODUCTION 
The longitudinal dispersion of noninteracting particles suspended in a 

Poiseuille flow (average velocity U) through a cylindrical tube (radius R ,  
tube axis z, see Fig. 1) was first explained by Westhaver (I) and Taylor 
(2). They showed that this dispersion is, in the long time limit, of the 
diffusive type, i.e., the mean square deviation (8z2(t)) = ( (z( t )  - (z(t)))2) 
from the average motion ( z ( t ) )  grows linearly with time [see also Aris (3)]:  

K is called the effective longitudinal diffusion coefficient. It is the sum of 
the molecular diffusion coefficient R and a contribution caused by the 
inhomogeneity of the flow field, with the peculiarity that it is proportional 
to the inverse of D. In most cases the latter contribution is dominant, and 
we will, in the following, completely neglect the molecular diffusion in the 
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1342 MAES AND VAN DEN BROECK 

FIG. 1. Poiseuille flow through a cylindrical tube with radius R .  

direction z of the flow. The motion of a single particle is thus taken to be 
diffusive in the directions orthogonal to the tube axis, with diffusion coef- 
ficient D,  and completely deterministic in the z-direction with a velocity 
equal to the local flow velocity U ( I )  ( I  being the distance to the tube axis): 

a,z = u(r )  = 2Z[1 - ( I / R ) ~ ]  (2) 

The purpose of this paper is to investigate how Taylor’s result (1) is mod- 
ified in the presence of a transverse field, e.g., a gravitational field. Under 
the influence of this field the particles will acquire a systematic motion 
with “sedimentation” velocity v, which has to be superimposed on the 
diffusive motion. The competition between diffusion and systematic mo- 
tion, tending to make the particles float or sink, can be described in terms 
of the dimensionless Peclet number: 

01 = v R / D  (3) 

We will show that the correction to the result (1) is of the following form: 

ii2R2 K = -C(a) 
480 (4) 

and we will determine the function c(01). This result is of importance in 
field-flow fractionation and chromatography (4, 9, where one tries to 
separate particles according to this Peclet number (i,e., according to their 
radius, mobility, etc.) The present model was proposed by Reis and Light- 
foot (9) as a simplified but realistic model of electropolarization chroma- 
tography, where one tries to separate protein mixtures. In this case the 
sedimentation is caused by a constant electric field. The average motion 
(z( t ) )  was calculated analytically. In the present paper we want to extent 
this result by the calculation of C(CY). We mention first that in the case of 
Poiseuille flow between plane parallel plates, with a field orthogonal to 
these plates, the function C(a) can be obtained analytically (6, 7). In the 
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FIELD-FLOW FRACTIONATION FOR POlSEUlLLE FLOW 1343 

present geometry, the introduction of a field destroys the rotational sym- 
metry of the problem and we are not able to obtain analytic results for 
C ( a ) .  Instead we used a variational principle that was derived in a previous 
paper (8). The following functionals K , ( f )  and Kz(f) are lower bounds 
for K :  

and 

&(f) = 2(f)6u+n) + (flif>) 5 K (6) 

Here: i) i is the operator that describes the stochastic dynamics in the 
plane orthogonal to the flow, i.e., to the tube's axis. In the present problem 
it has the following form: 

with zero flux boundary conditions at the tube's surface r = R: 

[Dd,Zx + (Day - v ) Z y ] * F l l i l = R  = o  

L+" = 0 

ii) +[, is the normalized steady-state distribution: 

1.e.. 

( I ,  is the first modified Bessel function). 
iii) 6u is the deviation of the flow velocity from its average value: 

iv) The inner product is defined by 
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1344 MAES AND VAN DEN BROECK 

v) The inequality (6) is valid for any function f that satisfies the boundary 
condition (8). The use of inequality (5 )  moreover requires f to be different 
from &. 

This paper is organized as follows: To illustrate the use and accuracy of 
the variational principles, in Section 2 we study the rate of dispersion of 
particles suspended in a Poiseuille streaming between two parallel plates 
with a constant transverse field, and compare variational with analytic 
results for the dispersion coefficient K .  The agreement is found to be 
extremely good. In Section 3 we discuss the same problem in a cylindrical 
tube. We calculate a lower bound for the dispersion coefficient on the basis 
of a 2,3,6,  and 13 parameter variational approach, based on Eqs. (5 )  and 
(6). The convergence is very good and the 13-parameter result is thought 
to be almost perfect. Series expansion for large and small a is also given. 

2. THE EFFECT OF SEDIMENTATION ON WESTHAVER-TAYLOR 
DISPERSION BETWEEN PLANE PARALLEL PLATES 

In the case of Poiseuille streaming between two parallel plates at y = 0 
and y = L, respectively, the flow profile u(y )  is given by 

u ( y )  = d ( l  L - ;) (13) 

The dispersion coefficient K of suspended particles in the presence of a 
transverse field can be evaluated analytically (6, 7): 

with 

J(3a2 - 30a + 84)e3" + (a4 - 6a3 
5040 

(ea - 1) a 

+ 3001 - 252)e2" + ( -a4 - 6a3 - 21a2 

+ 30a - 252)e" + (-3a2 - 30a - 84)] 

C(a)  = 

The function C(a)  is schematically represented in Fig. 2. Note that, some- 
what surprisingly, C(a)  is found to have a maximum in the vicinity of 
O1 = 3.5. 
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We will calculate a lower bound for C(a)  on the basis of a 2, 3, 6, and 
13 parameter variational approach based on Eqs. (5 )  and (6). The trans- 
verse stochastic operator is of the following form: 

The trial functions f have to satisfy the following reflecting boundary 
conditions: 

(D: - u)fI y = n  = 0 
y = L  

The steady-state distribution is 

As an example of a one-parameter variational function, we first consider 
the following trial function: 
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1346 MAES AND VAN DEN BROECK 

We can set the coefficient equal to 0 since it corresponds to a term 
proportional to +", which does not contribute in the calculation of KJ or 
K2. On the other hand, the constant al  has to be equal to 0 to satisfy the 
boundary condition at y = 0. Finally, the constant a2 is chosen such that 
f l  satisfies the boundary condition at y = L. Optimization of the lower 
bounds (5) and (6) in terms of a3 then gives 

3(e'[az - 6a + 121 + [ -a2 - 601 - 12])-' 
420 

a6(ea - 1) 
C(a) = 

x (e2"[6a2 - 48a + 1081 + ea[a4 - 24a - 2161 

+ [6a2 + 48a + 108])2 (20) 

The same procedure with variational function 

gives 

C(a) = 
945 

a6(eu - 1)3 
(e"[4a4 - 36a3 + 156a2 - 360a + 3601 

+ [-a4 + 24a2 - 360])-I(e2"(8a3 - 76a2 + 264a - 3361 

+ ea[a5 - 24a3 + 80az - 216a + 6721 

+ [4a3 + 2 0 ~ ~ '  - 48a - 35])* (22) 

A two parameter variational treatment with a linear combination of these 
functions (i.e., with terms in y 2 ,  y3, and y4) gives a lower bound on C(a)  
which almost perfectly agrees with the exact result. This result, together 
with Eqs. (20) and (22), is compared with C(a)  in Fig. 3. 

Note that all these approximations have the exact asymptotic behavior 
for large a: 

15,120 
a4 C ( 4  - 
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0 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 

FIG. 3. Lower bounds for C(u) for the case of field-flow fractionation between plane parallel 
plates. The full line corresponds to the exact result of Eq. (15). 

This is due to the fact that for (Y large and negative, all the particles are 
very close to the boundary y = 0, such that the effect of the higher order 
terms in y3+", y4+,,, ... are negligible compared to the contribution of the 
lowest order contained in y2+,. 

We have also carried out calculations for variational functions with more 
parameters: 

N 
C a iy i  exp ( (YY/L)  
i = 2  

in which only the coefficient a2 is fixed by the boundary condition at y = L .  
A 4-parameter fit, with terms up to order y 6 ,  already gives a result with 

a relative error of the order of the computing precision This gives 
us some confidence to apply the variational approach in problems for which 
the analytic solution is not available. 
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1348 MAES AND VAN DEN BROECK 

3. THE EFFECT OF SEDIMENTATION ON WESTHAVER-TAYLOR 
DISPERSION IN A CYLINDRICAL TUBE 

In the case of a Poiseuille streaming through a cylindrical tube of radius 
R ,  the flow profile u(r) has the following form: 

u(r )  = 2E(l - (r/R)2) (25) 

The motion of the suspended particles in a direction perpendicular to 
the tube axis (z-axis) is the combination of diffusion, with diffusion constant 
D, and drift (or sedimentation), with systematic velocity u,  which we take 
to be oriented along the (vertical) y-axis. The corresponding equation of 
motion is given by Eq. (7) with boundary conditions Eq. (8) and stationary 
state given by a Boltzmann distribution, cf. Eq. (10). 

The presence of the vertical field breaks the cylindrical symmetry of the 
problem and makes an analytic treatment very difficult. 

By introducing dimensionless variables however, it is easy to verify that 
the perturbation of the field can be expressed in terms of the dimensionless 
number a = R u / D ,  so that K is of the following form: 

We now proceed to evaluate the correction factor C(a)  as accurately as 
possible by using the variational principles. It is important to make a good 
guess for the trial functions. First, instead of working in terms of the y- 
and z-coordinates, we will consider polar coordinates r and 8. Since the 
problem is symmetrical around the vertical axis, i.e., invariant under the 
transformation 8-n - 8, the trial function can be chosen of the following 
form (no cosine terms): 

f ( r ,8 )  = exp (ar sin 6/R)[+o(r)  + sin 6+,(r) + sin2 6+,(r) + a * - ]  

= exp (ar sin 8IR) uk. rk sin’ 8 
k,  1 

The question is how far one should go in the Taylor expansion in terms 
of r and sin 8, respectively. A first answer will, of course, come from the 
rate of convergence that one observes as one increases the number of 
variational parameters ukl. Another guiding hint is obtained by writing the 
“optimal” trial function 6 (i.e., the function that gives the exact result for 
K) as a series expansion in a: 

= 3r0 + a+, + a2$* + ..* (28) 
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The functions JIo, JI,, etc. can be found exactly as follows. The “optimal” 
trial function JI that maximizes Eqs. (5) and (6) is the solution of the 
following equation: 

LJI = -8u+() (29) 

with JI satisfying the boundary conditions. By straightforward expansion, 
one finds 

- 
U 

J IO  = 2 4 D R 2  [ -3r4 + 6r2R2 - 2R4]& 

- 
U JI1 = 7 [ r 5  - 3r3R2 + 4rR4] sin 8+() 

48DR 

- 
U [( -r6 + 6r4R2 - 9r2R4 - 29R6) J12 = (48)*DR4 

+ 6( - rb + 4r4R2 - 5r2R4) sin2 (30) 
- 

[(2r7 - 15r5R2 + 47r3R4 - 80rR6) sin 8 
U 

*’= 48 x 320DRS 

+ (4r’ - 20r5R2 + 24r3R4) sin3 €I]+() 

- 
rR + 12rbR2 - 72r4R4 + 112r2Rb + 1203R’) U 

“ = (48)23200R6“ - 

+ 8( -2r8 + 18r6R2 - 69r4R4 + 92r2R6) sin2 0 

+ 16( - r8 + 6r6R2 - 7r4R4) sin4 

The corresponding exact series expansion for I( reads: 

1711 a4 + O(a6) K = !??(I + 13 - 
480 120 48 x 960 

In analogy to the expressions for the functions +k, we have considered 
a trial function of the following form: 

N N + 4  

f(r,O) = +n 2 2 uklrl sink 8 = +n 2 f k ( r )  sink 8 (32) 
k = O  I = k  k 

l+k=even 
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1350 MAES AND VAN DEN BROECK 

For similar reasons as those discussed when setting a. equal to zero in 
Eq. (19), a, can be set equal to zero. Furthermore, the boundary condition 
(8) can be satisfied by choosing the coefficients aij (i > 0) and a02 such that: 

(&fj)(r=R = 0, j = 0, ..., N (33) 

A one- and two parameter trial function of the form given by Eq. (32)  
are thus, respectively, 

fo(r) = a04(r4 - 2r2R2) 

f j ( r )  = 0, Vj 2 3 (34) 

and 

fo (r )  = uo4(r4 - 2 R V )  

f,(r) = a13(r3 - 3R2r) 

f j ( r )  = 0, Vi 2 1 (35) 

In Fig. 4 we show the results that are thus obtained, together with those 
for trial functions with 6 parameters [including terms up to (r6 sin2 O)], 
with 9 parameters [including terms up to (rx sin2 e)], and with 13 parameters 
[including terms up to (rx sin4 e)]. The best lower bound is also shown for 
a values ranging from 0 to 5. Note that both variational principles gave 
results that were identical within the numerical accuracy. For comparison, 
we also show some results in Table 1. Note the fast convergence as the 
number of parameters is increased, especially for small values of a. Be- 
tween the 9-parameter and the 13-parameter results, the difference is 
smaller than 0.1%. No significant improvement could be made by including 
two higher terms in sin 8, or two higher terms in r.  Furthermore, the results 
from the series expansion given in Eq. (31) is in excellent agreement with 
the variational results for small values of a. Finally, we note that all the 
variational results give the same asymptotic result for a large, namely: 

4. DISCUSSION 
We have calculated the longitudinal dispersion coefficient K for field- 

flow fractionation in a cylindrical tube, using a variational principle. The 
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1.20 - : f@ 1.20- 
: C@f@+ CJ, .----- - : berl result 

0.60 - 

0.60 - 

0.40 - 

0.20- 

0 I I I I I i i i i 

1.00-1 

0.60 - 

0.60 - 

0.40 - 

0.20- 

0 I I I I I i i i i 

0 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 

FIG. 4. Lower bounds for C(a) for the case of field-flow fractionation in a cylindrical tube. 
The full line corresponds to the best obtained result (with the 13-parameter fit). 

TABLE 1 

a 6 parameter 

0.0 
0.5 
1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

0.99979 
1.02485 
1.07603 
1.10718 
1.08563 
1.00611 
0.89544 
0.76624 
0.64395 
0.53168 
0.43666 

9 parameter 

0.99999 
1.02485 
1.07638 
1.10747 
1.08564 
1.00868 
0.89580 
0.76846 
0.64473 
0.53324 
0.43782 

13 parameter Eq. (31) 

0.99999 1 .m 
1.02485 1.02476 
1.07638 1.07120 
1.10749 
1.08572 
1.00909 
0.89608 
0.7691 1 
0.6451 1 
0.53358 
0.4381 3 
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1352 MAES AND VAN DEN BROECK 

results are very similar to those obtained in the case of Poiseuille flow 
between plane parallel plates. K has a small maximum of 10% above the 
zero field result for (Y = 1.5, and decreases for a large as We have 
shown that the value of K can be obtained from the variational calculation 
with high accuracy, so that the latter can be used with some confidence to 
obtain the result for the dispersion coefficient in problems where an analytic 
treatment is difficult (e.g., when the eigenfunctions of the problem under 
consideration are not known). 
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