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Field-Flow Fractionation for Poiseuille Flow
through a Cylindrical Tube
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Abstract

We calculate the longitudinal dispersion coefficient X for field-flow fractionation
in a cylindrical tube by using a variational principle.

1. INTRODUCTION
The longitudinal dispersion of noninteracting particles suspended in a
Poiseuille flow (average velocity u) through a cylindrical tube (radius R,
tube axis z, see Fig. 1) was first explained by Westhaver (1) and Taylor
(2). They showed that this dispersion is, in the long time limit, of the
diffusive type, i.e., the mean square deviation (d2%(t)) = ((z(f) — (z(¢)))»
from the average motion (z(t)) grows linearly with time [see also Aris (3)]:

@), @R
lim =" =Kk=%p* P )

K is called the effective longitudinal diffusion coefficient. It is the sum of
the molecular diffusion coefficient D and a contribution caused by the
inhomogeneity of the flow field, with the peculiarity that it is proportional
to the inverse of D. In most cases the latter contribution is dominant, and
we will, in the following, completely neglect the molecular diffusion in the
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FI1G. 1. Poiseuille flow through a cylindrical tube with radius R.

direction z of the flow. The motion of a single particle is thus taken to be
diffusive in the directions orthogonal to the tube axis, with diffusion coef-
ficient D, and completely deterministic in the z-direction with a velocity
equal to the local flow velocity u(r) (r being the distance to the tube axis):

9.z = u(r) = 24l - (r/R)? Q)

The purpose of this paper is to investigate how Taylor’s result (1) is mod-
ified in the presence of a transverse field, e.g., a gravitational field. Under
the influence of this field the particles will acquire a systematic motion
with “sedimentation” velocity v, which has to be superimposed on the
diffusive motion. The competition between diffusion and systematic mo-
tion, tending to make the particles float or sink, can be described in terms
of the dimensionless Peclet number:

a = vR/D 3)
We will show that the correction to the result (1) is of the following form:

*R?
K = ISEC(a) 4)

and we will determine the function C(a). This result is of importance in
field-flow fractionation and chromatography (4, 5), where one tries to
separate particles according to this Peclet number (i.e., according to their
radius, mobility, etc.) The present model was proposed by Reis and Light-
foot (9) as a simplified but realistic model of electropolarization chroma-
tography, where one tries to separate protein mixtures. In this case the
sedimentation is caused by a constant electric field. The average motion
(z(2)) was calculated analytically. In the present paper we want to extent
this result by the calculation of C(a). We mention first that in the case of
Poiseuille flow between plane parallel plates, with a field orthogonal to
these plates, the function C(a) can be obtained analytically (6, 7). In the
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present geometry, the introduction of a field destroys the rotational sym-
metry of the problem and we are not able to obtain analytic results for
C(o). Instead we used a variational principle that was derived in a previous
paper (8). The following functionals K,(f) and K,(f) are lower bounds
for XK:

_ (fldudy)’ <
and
Kf) = 2Afloudy + FILMH) =K (6)

Here: i) L is the operator that describes the stochastic dynamics in the
plane orthogonal to the flow, i.e., to the tube’s axis. In the present problem
it has the following form:

A 9 9*
L=bl=+=) - 7
ax? ay2> voy )

with zero flux boundary conditions at the tube’s surface r = R:

[Da.2 + (Dd, — V)3 Fp-r = 0 ®3)
ii) &, is the normalized steady-state distribution:
Loy =0 &)
i.e.,
ae”
do(x,y) = IR (o) (10)

(1, is the first modified Bessel function).
iii) du is the deviation of the flow velocity from its average value:

bu = u() ~ [ [ u(r) du(ry) dx dy an
r=R
iv) The inner product is defined by

(fle) = [[ fooi™ dx dy (12)

r<R
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v) The inequality (6) is valid for any function f that satisfies the boundary
condition (8). The use of inequality (5) moreover requires f to be different
from &,.

This paper is organized as follows: To illustrate the use and accuracy of
the variational principles, in Section 2 we study the rate of dispersion of
particles suspended in a Poiseuille streaming between two parallel plates
with a constant transverse field, and compare variational with analytic
results for the dispersion coefficient K. The agreement is found to be
extremely good. In Section 3 we discuss the same problem in a cylindrical
tube. We calculate a lower bound for the dispersion coefficient on the basis
of a2, 3, 6, and 13 parameter variational approach, based on Egs. (5) and
(6). The convergence is very good and the 13-parameter result is thought
to be almost perfect. Series expansion for large and small a is also given.

2. THE EFFECT OF SEDIMENTATION ON WESTHAVER-TAYLOR
DISPERSION BETWEEN PLANE PARALLEL PLATES
In the case of Poiseuille streaming between two parallel plates aty = 0
and y = L, respectively, the flow profile u(y) is given by

u(y) = 6&%(1 - %) (13)

The dispersion coefficient K of suspended particles in the presence of a
transverse field can be evaluated analytically (6, 7):

. {8z¥r)) wL?
K = lim 2t( b - 2100 (14)

with

(eu—sim-l%[@az — 30a + 84)e™ + (o' — 60 — 21a?

+ 30a — 252)e* + (—a* — 60® — 21a?

Cla) =

+ 300 — 252)e® + (32 — 30a — 84)] (15)

The function C(a) is schematically represented in Fig. 2. Note that, some-
what surprisingly, C(a) is found to have a maximum in the vicinity of
a =35
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FIG. 2. The function C(a) (analytical result, cf. Eq. 15).

We will calculate a lower bound for C(a) on the basis of a 2, 3, 6, and
13 parameter variational approach based on Egs. (5) and (6). The trans-
verse stochastic operator is of the following form:

. d? d
L= Dd—y2 - vd_y (16)
The trial functions f have to satisfy the following reflecting boundary
conditions:
d
D— - =0 17
( dy U)f y=0 (17
y=L
The steady-state distribution is
aeuy/L
S0 = T (18)

As an example of a one-parameter variational function, we first consider
the following trial function:

fi = exp (ay/L)(a3y* + ayy* + a1y + ay) (19)
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We can set the coefficient g, equal to 0 since it corresponds to a term
proportional to ¢, which does not contribute in the calculation of K or
K;. On the other hand, the constant g, has to be equal to 0 to satisfy the
boundary condition at y = 0. Finally, the constant 4, is chosen such that
f1 satisfies the boundary condition at y = L. Optimization of the lower
bounds (5) and (6) in terms of a; then gives

Clo) = &%%T)J(e"[az - 6a + 12] + [-a? = 6a — 12])7!

X (e®[6a® — 48a + 108] + e*[a* — 24a — 216]

+ [6a + 480 + 108])? (20)

The same procedure with variational function

fr = exp (ay/L)(ay* + ayy?) (1)
gives

Cla) = J(—e?l“—fl—)g(e“ﬂot“ — 36a’® + 15602 — 360a + 360]

+ [~ + 24a? — 360])-1(e*[8a’ — 7607 + 264a — 336]
+ e°[a® — 240’ + 80c? — 2160 + 672]

+ [4a® + 20a? — 48a — 35]) (22)

A two parameter variational treatment with a linear combination of these
functions (i.e., with terms in y?, y*, and y*) gives a lower bound on C(a)
which almost perfectly agrees with the exact result. This result, together
with Eqgs. (20) and (22), is compared with C(a) in Fig. 3.

Note that all these approximations have the exact asymptotic behavior
for large a:

(23)
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FiG. 3. Lower bounds for C(a) for the case of field-flow fractionation between plane parallel
plates. The full line corresponds to the exact result of Eq. (15).

This is due to the fact that for a large and negative, all the particles are
very close to the boundary y = 0, such that the effect of the higher order
terms in y*d,, y*dy, ... are negligible compared to the contribution of the
lowest order contained in y%dy.

We have also carried out calculations for variational functions with more
parameters:

N

E a;y exp (ay/L) (24)

i=2

in which only the coefficient a, is fixed by the boundary conditionaty = L.

A 4-parameter fit, with terms up to order y®, already gives a result with
a relative error of the order of the computing precision (107%). This gives
us some confidence to apply the variational approach in problems for which
the analytic solution is not available.
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3. THE EFFECT OF SEDIMENTATION ON WESTHAVER-TAYLOR
DISPERSION IN A CYLINDRICAL TUBE
In the case of a Poiseuille streaming through a cylindrical tube of radius
R, the flow profile u(r) has the following form:

u(r) = 2a(l — (r/R)) (25)

The motion of the suspended particles in a direction perpendicular to
the tube axis (z-axis) is the combination of diffusion, with diffusion constant
D, and drift (or sedimentation), with systematic velocity v, which we take
to be oriented along the (vertical) y-axis. The corresponding equation of
motion is given by Eq. (7) with boundary conditions Eq. (8) and stationary
state given by a Boltzmann distribution, cf. Eq. (10).

The presence of the vertical field breaks the cylindrical symmetry of the
problem and makes an analytic treatment very difficult.

By introducing dimensionless variables however, it is easy to verify that
the perturbation of the field can be expressed in terms of the dimensionless
number a = Rv/D, so that K is of the following form:

Tisz

apC@ (26)

We now proceed to evaluate the correction factor C(a) as accurately as
possible by using the variational principles. It is important to make a good
guess for the trial functions. First, instead of working in terms of the y-
and z-coordinates, we will consider polar coordinates r and 0. Since the
problem is symmetrical around the vertical axis, i.e., invariant under the
transformation 6—m — 0, the trial function can be chosen of the following
form (no cosine terms):

f(r.8)

exp (ar sin 8/R)[dy(r) + sin 8d(r) + sin? 8d,(r) + -]

exp (ar sin 8/R) >, ay r* sin' 6 (27)
k1

The question is how far one should go in the Taylor expansion in terms
of r and sin 0, respectively. A first answer will, of course, come from the
rate of convergence that one observes as one increases the number of
variational parameters a,,. Another guiding hint is obtained by writing the
“optimal” trial function ¢ (i.e., the function that gives the exact result for
K) as a series expansion in a:

o= + al + ol + o (28)
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The functions s, §s;, etc. can be found exactly as follows. The “optimal”
trial function ¢ that maximizes Eqs. (5) and (6) is the solution of the
following equation:

Ly = —dud, (29

with  satisfying the boundary conditions. By straightforward expansion,
one finds

u
Yy = W[-:ir“ + 6r:R?* — 2R4]¢0

u
48DR?

by = r® — 3r'R? + 4rR] sin 0,

—ﬁ[(—r" + 6r*R® — 9r°R* — 29RY)

Ve = (48

+ 6(—r% + 4r'R* — 5r'R*) sin? 8]d, (0

B 57 _ 15pR? 3R4 _ 6} i
U3 8 x 320DR5[(2r 15F°R?* + 47r°R* — 80rR®) sin 8

+ (4r7 — 20r°R? + 24r3R*) sin® 0]d,

Yy = (48—)2;2'60-15[(_’8 + 12°R? — T2r*R* + 1127°R® + 1203RY)

+ 8(—2r* + 18r°R? — 69r*R* + 92r’R®) sin’ 0
+ 16(—r® + 6r°R? — 7r'R*) sin‘ 0]d,
The corresponding exact series expansion for X reads:

u’R? 13 , 1711, 6
48D(1 + o + O(a (31)

k= 120° T 48 x 960

In analogy to the expressions for the functions ,, we have considered
a trial function of the following form:

N+4
> aur'sint 8 = &g Y, fi(r) sin* 0 (32)
I=k k

I+k=even

f(r’e) = ¢0 E

k=0
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For similar reasons as those discussed when setting a, equal to zero in
Eq. (19), ay can be set equal to zero. Furthermore, the boundary condition
(8) can be satisfied by choosing the coefficients a; (i > 0) and ay, such that:

(arfi)|r=R =0, j=0,..,N (33)

A one- and two parameter trial function of the form given by Eq. (32)
are thus, respectively,

for) = aw(r* — 2r°R?)

(=0 ¥=1 (34)
and

folr) = au(r* — 2R%r)

filr) = an(r® — 3R%)

flr) =0, Vi=1 (35)

In Fig. 4 we show the results that are thus obtained, together with those
for trial functions with 6 parameters [including terms up to (r¢ sin® 6)],
with 9 parameters [including terms up to (® sin? )], and with 13 parameters
[including terms up to (r® sin* 8)]. The best lower bound is also shown for
a values ranging from 0 to 5. Note that both variational principles gave
results that were identical within the numerical accuracy. For comparison,
we also show some results in Table 1. Note the fast convergence as the
number of parameters is increased, especially for small values of . Be-
tween the 9-parameter and the 13-parameter results, the difference is
smaller than 0.1%. No significant improvement could be made by including
two higher terms in sin 6, or two higher terms in r. Furthermore, the results
from the series expansion given in Eq. (31) is in excellent agreement with
the variational results for small values of «. Finally, we note that all the
variational results give the same asymptotic result for a large, namely:

Cla) — 1536/ (36)

4. DISCUSSION
We have calculated the longitudinal dispersion coefficient K for field-
flow fractionation in a cylindrical tube, using a variational principle. The
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FIG. 4. Lower bounds for C(a) for the case of field-flow fractionation in a cylindrical tube.
The full line corresponds to the best obtained result (with the 13-parameter fit).

TABLE 1

o 6 parameter 9 parameter 13 parameter Eq. (31)
0.0 0.99979 0.99999 0.99999 1.00000
0.5 1.02485 1.02485 1.02485 1.02476
1.0 1.07603 1.07638 1.07638 1.07120
1.5 1.10718 1.10747 1.10749

2.0 1.08563 1.08564 1.08572

2.5 1.00611 1.060868 1.00909

3.0 0.89544 0.89580 0.89608

3.5 0.76624 0.76846 0.76911

4.0 0.64395 0.64473 0.64511

4.5 0.53168 0.53324 0.53358

5.0 0.43666 0.43782 0.43813
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results are very similar to those obtained in the case of Poiseuille flow
between plane parallel plates. K has a small maximum of 10% above the
zero field result for a = 1.5, and decreases for a large as a™*. We have
shown that the value of K can be obtained from the variational calculation
with high accuracy, so that the latter can be used with some confidence to
obtain the result for the dispersion coefficient in problems where an analytic
treatment is difficult (e.g., when the eigenfunctions of the problem under
consideration are not known).
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